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1. Introduction

Belt-pulley drives are widely used to drive a variety of machinery, including serpentine belt
systems, band saws, tape drives, etc. In cases where the transport speed of the belt is high, these
systems have the gyroscopic characteristics of axially moving continua. The transverse vibration
of these axially moving continua is typically modelled as either a travelling string or a travelling,
tensioned, Euler–Bernoulli beam. Closed-form solutions for the natural frequencies and vibration
modes are available for the string model [1,2]. For the axially moving beam model, due to the
beam’s dispersive property, only numerical solutions are available [3,4]. Because most axially
moving media have small bending stiffness relative to their tension, they can be modelled as an
axially moving beam with small dimensionless bending stiffness. The transition of modal
properties from the known axially moving string case to the beam case is desirable from both
practical and theoretical viewpoints. Finding closed-form approximate solutions of the eigenvalue
problem for such transitional systems is the main objective of this study. Before highlighting
the works in this field, we first review work related to the phase closure principle, which is one of
the main tools used in this article.
The vibration of elastic structures can be described in terms of waves propagating and

attenuating in structures. The phase closure principle [5] states that if the phase change for
propagating (or evanescent) waves is an integer multiple of 2p as they return to their start point
after travelling forward and back along a finite structure, then the frequency at which the waves
travel is a natural frequency and the corresponding vibration mode is the superposition of the
component waves. In the field of acoustics, solids, and fluids, wave propagation and attenuation
in waveguides and wave reflection/transmission at a boundary point has been studied extensively.
The phase closure principle links the knowledge of wave motion in these fields to computation of
natural frequencies and modes of finite structures. Mead [6] applies the method to find the
eigensolutions of stationary beams. Exact frequency equations are established that differ from the
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conventional ones but have identical roots. These frequency equations have clear physical
interpretation and deepen understanding of the beam vibration modes. Mace [7] develops a
numerical matrix method based on wave propagation, reflection, and transmission at a point
support (or a change of cross-section or material property) to calculate the natural frequencies
and modes for beams. Tan and his co-workers [8,9] extend this method to some complex beam
structures, like those consisting of several different uniform segments.
For axially moving continua it is well known that the vibration modes can be viewed as the

superposition of pairs of opposite-going propagating waves. The phase speeds in the opposite
directions are different due to the convective effect of the medium’s axial speed. Lengoc and
McCallion [10] study the relation between wave propagation and natural frequency, but their
work is limited to non-dispersive system like taut strings. Lee and Mote [11] investigate the energy
transfer due to the interaction between the translating continua and its boundary supports. The
phase closure principle is used to obtain the natural frequencies of an axially moving string.
Chakraborty and Mallik [12] study the free vibration of a travelling beam simply supported at
both ends. The frequency equation is derived based on the phase closure principle. This work
applies only to beams with finite bending stiffness and zero tension; transition behavior from a
taut string to a tensioned beam is not investigated.
More commonly, researchers investigate axially moving continua mathematically without

consideration of the physical wave propagation. They study transition behaviors for moving
beams with vanishing bending stiffness by using perturbation techniques directly on the
differential equations. Because the main concern of this study is the modal properties, only those
aspects of related works are reviewed here. Pellicano and Zirilli [13] study axially moving beams
with simple supports at both ends. While not specifically addressed, their natural frequencies can
be extracted from the results. These natural frequencies depend only on the displacement
boundary condition of each end, suggesting that the remaining two beam boundary conditions do
not affect the natural frequencies. .Oz et al. [14] and .Ozkaya and Pakdemirli [15] examine the
transition from axially moving string to beam for an axially accelerating material. By letting the
accelerating terms vanish, the free vibration solutions for constant belt speed follow. In Ref. [14],
multiple scales perturbation is applied to find the approximate natural frequencies. Problems are
apparent because no boundary conditions are considered in the derivation, indicating that
different boundary conditions yield the same natural frequencies. The problem considered in
Ref. [15] is similar to that in Ref. [14] and similar techniques are used. The improvement is that the
spatial boundary layer terms arising from small bending stiffness are considered. Two sets of
boundary conditions are considered. The solutions in Ref. [15] incorrectly imply that the
approximate natural frequencies for these two sets of boundary conditions are the same. Further,
for clamped boundaries the zero speed solution fails to give the approximate solution given by
O’Malley [16]. In contrast, the present analysis gives different natural frequencies for these two
kinds of boundary conditions, and the zero speed results converge to the exact solution (simply
supported) and that given by O’Malley (fixed–fixed), although the adopted methods differ.
O’Malley’s [16] work treats stationary beams with two clamped ends. When we extended this
method to axially moving beams, the procedure became cumbersome and no explicit solutions
were obtained.
In this study, a different perturbation method is developed to find closed-form, approximate

eigensolutions of axially moving beams with small bending stiffness. Wave propagation
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considerations lead to an algebraic equation with a small dimensionless bending stiffness
parameter. Taking advantage of the simplicity of the propagation and attenuation properties of
the waves, which are determined by the roots of an algebraic equation, the phase closure principle
is used to find the natural frequencies. The complex vibration modes are obtained naturally from
the superposition of all component waves in the beam. Approximate eigensolutions for different
boundary conditions are presented. The perturbation solutions are confirmed by comparison with
numerically exact ones. For the special cases mentioned above where the exact or approximate
solutions are available, the derived approximate solutions agree with them.
Instead of considering spatial and temporal variations for the governing partial differential

equation (like in Refs. [13,15]), this approach focuses on perturbation of algebraic equations. No
boundary layers or secular terms need to be considered explicitly in the derivation. Although the
method is simple, no completeness of the solutions is sacrificed. For example, the evanescent wave
components (if not zero) automatically generate boundary layer terms for those beams where a
small bending stiffness creates edge effects at the boundaries. Unlike prior perturbations where
assumed mode spatial expansions are only suited for certain boundary conditions, this method
handles different boundary conditions with a consistent treatment.

2. Model equations

The dynamic equation for an axially moving beam is

mwtt þ 2mcwxt � ðP � mc2Þwxx þ EIwxxxx ¼ 0; 0oxoL; ð1Þ

where m is the belt mass per unit length, wðx; tÞ is the transverse displacement, c is the belt
transport speed, P is the tension, and EI is the bending stiffness. The following non-dimensional
variables are introduced:

#x ¼
x

L
; #w ¼

w

L
; #t ¼ t

ffiffiffiffiffiffiffiffiffi
P

mL2

r
; e2 ¼

EI

PL2
; #v ¼ c

ffiffiffiffi
m

P

r
: ð2Þ

Substitution of Eq. (2) into Eq. (1) leads to the dimensionless equation (after dropping the hat)

wtt þ 2vwxt � ð1� v2Þwxx þ e2wxxxx ¼ 0; 0oxo1: ð3Þ

Assuming w ¼ eiðrx�otÞ; where r is the wavenumber and o is the wave propagation frequency,
Eq. (3) yields

e2r4 þ ð1� v2Þr2 þ 2vor � o2 ¼ 0: ð4Þ

Note that the small parameter e{1 multiplies the highest power of r: The roots of such a
polynomial equation have two possible forms [17].
In the first form, the roots of Eq. (4) are expressed using the straightforward expansion

r ¼ x0 þ ex1 þ e2x2 þ? ð5Þ

Substitution of Eq. (5) into Eq. (4) leads to the e0 order result

x0 ¼
o

v71
ð6Þ

ARTICLE IN PRESS

L. Kong, R.G. Parker / Journal of Sound and Vibration 276 (2004) 459–469 461



and the e1 order result

2ð1� v2Þx0 þ 2vo ¼ 0 or x1 ¼ 0: ð7Þ

The first equation in Eq. (7) is discarded because it contradicts Eq. (6), so x1 ¼ 0: The e2 order
equation gives

x2 ¼
�x40

2voþ 2ð1� v2Þx0
¼

�
1

2

o3

ðv þ 1Þ4
when x0 ¼

o
v þ 1

;

1

2

o3

ð1� vÞ4
when x0 ¼

�o
1� v

:

8>>><
>>>:

ð8Þ

Eqs. (5)–(8) provide two of the four roots of Eq. (4).
The remaining two roots are expressed as the singular expansion

r ¼
y

el
þ x0 þ?; l > 0: ð9Þ

Substitution of Eq. (9) into Eq. (4) gives

e2
y

el
þ x0 þ?

� �4
þð1� v2Þ

y

el
þ x0 þ?

� �2
þ2vo

y

el
þ x0 þ?

� �
� o2 ¼ 0: ð10Þ

The dominant terms in Eq. (10) are y4=e4l�2 and ð1� v2Þy2=e2l: Balancing these leads to

4l� 2 ¼ 2l ) l ¼ 1: ð11Þ

Eq. (10) then becomes

e�2½y4 þ ð1� v2Þy2� þ e�1½4x0y3 þ 2ð1� v2Þx0y þ 2voy� þ? ¼ 0 ð12Þ

with the solutions

y ¼ 7i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p
; ð13Þ

2x0½ð1� v2Þ � 2ð1� v2Þ� þ 2vo ¼ 0 ) x0 ¼
vo
1� v2

: ð14Þ

In summary, the wave dispersion equation (4) has the four roots

r1 ¼
o
1þ v

� e2
1

2

o3

ð1þ vÞ4
þ Oðe3Þ; r2 ¼ �

o
1� v

þ e2
1

2

o3

ð1� vÞ4
þ Oðe3Þ;

r3 ¼
vo
1� v2

þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p
e

þ OðeÞ; r4 ¼
vo
1� v2

� i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p
e

þ OðeÞ: ð15Þ

Table 1 compares the approximate and numerically exact roots for three cases. Consistent with
Eq. (15), r1 and r2 are best approximated by perturbation. Physically, the real parts of the roots
represent the phase change between two points a unit distance apart, and the imaginary parts
represent the variation of the wave amplitudes for two points a unit distance apart. Specifically, r1
represents the wave propagating in the positive direction, r2 the wave propagating in the negative
direction, r3 the evanescent wave attenuating in the positive direction, and r4 the evanescent
wave attenuating in the negative direction. The beam motion is the superposition of the
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four components

wðx; tÞ ¼ ½c1eir1x þ c2e
ir2x þ c3e

ir3x þ c4e
ir4x�e�iot ð16Þ

where c1–c4 are complex coefficients.
For small bending stiffness e{1; the imaginary parts of the evanescent waves r3 and r4 become

very large. Consequently the r3 component can exist only close to the boundary x ¼ 0; and the r4
component exists only close to the boundary x ¼ 1 (Fig. 1). They can be viewed as part of the
reflected waves as the propagating waves (r1 and r2) travel forward and back along the beam
between the boundary points A ðx ¼ 0Þ and B ðx ¼ 1Þ (Fig. 1). The phase closure principle can
now be applied to the propagating waves to find the eigensolutions for different boundary
conditions.

3. Application of the phase closure principle

To apply the phase closure principle to the propagating waves (r1 and r2), one needs to find four
different phase changes: first, the propagating wave leaves from boundary A and arrives at
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Table 1

Comparison of approximate roots of Eq. (4) from Eq. (15) with numerically exact roots

Case Results r1 r2 r3 r4

e ¼ 0:01
v ¼ 0:80

Exact 0.7222 �6:4335 2:8556þ 60:2421i 2:8556� 60:2421i

o ¼ 1:30 Approx. 0.7222 �6:4313 2:8889þ 59:9999i 2:8889� 59:9999i
e ¼ 0:05
v ¼ 0:28

Exact 0.6482 �1:1501 0:2510þ 19:2243i 0:2510� 19:2243i

o ¼ 0:83 Approx. 0.6482 �1:1501 0:2522þ 19:2000i 0:2522� 19:2000i
e ¼ 0:10
v ¼ 0:15

Exact 1.2949 �1:7342 0:2197þ 10:0070i 0:2197� 10:0070i

o ¼ 1:50 Approx. 1.2947 �1:7324 0:2302þ 9:8869i 0:2302� 9:8869i

Beam with small    =x=0 x=1

r1

r2

r3

r4

r1

r2

A B

x

v

ε  EI/PL2

Fig. 1. Waves in a finite moving beam with small bending stiffness.
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boundary B with a phase change Re ðr1Þ ¼ r1 (because the span is normalized to unit length);
second, it reflects at boundary B with a phase change fðRBÞ; third, it travels from boundary B to
boundary A with another phase change �Reðr2Þ ¼ �r2 (minus sign due to leftward propagation);
finally, it reflects at boundary A with the fourth phase change fðRAÞ and returns to the start point
boundary A: Mathematically, the phase closure principle requires

r1 þ fðRBÞ � r2 þ fðRAÞ ¼ 2np; n ¼ 0;71;72;y: ð17Þ

Consider the case of a simply supported beam with boundary conditions

wð0; tÞ ¼ wxxð0; tÞ ¼ 0; wð1; tÞ ¼ wxxð1; tÞ ¼ 0 ð18Þ

At x ¼ 0 (point A in Fig. 1), there is no r4 evanescent component as noted above, and Eq. (16)
becomes

wðx; tÞjA ¼ ½c1eir1x þ c2e
ir2x þ c3e

ir3x�e�iot ð19Þ

Substitution into the boundary conditions at x ¼ 0 yields

1 1

r21 r23

 !
c1

c3

 !
¼ �

1

r22

 !
c2 )

c1

c3

 !
¼

1

r23 � r21

r22 � r23

r21 � r22

 !
c2: ð20Þ

For the two propagating waves, the relative phase due to the reflection at the left boundary is
given by the phase of

RA ¼
c1

c2
¼ �

r23 � r22
r23 � r21

¼ �
f�ð1� v2Þ þ e2½vo=ð1� v2Þ�2 � e2½o=ð1� vÞ�2g þ i2evo=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p
f�ð1� v2Þ þ e2½vo=ð1� v2Þ�2 � e2½o=ð1þ vÞ�2g þ i2evo=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p : ð21Þ

One can prove mathematically that the phase angle of RA is

fðRAÞ ¼ pþ Oðe3Þ ð22Þ

as shown graphically in Fig. 2, where p is from the leading minus sign preceding ðr23 � r22Þ=ðr
2
3 � r21Þ

in Eq. (21).
At x ¼ 1 (point B), there is no r3 evanescent component in Eq. (16). In seeking the relative

phase between propagating waves at B; it is notationally convenient to introduce x ¼ x � 1 and
express the coefficients in Eq. (16) using bk ¼ cke

irk : This gives

wðx; tÞjB ¼ ½b1eir1x þ b2e
ir2x þ b4e

ir3x�e�iot: ð23Þ
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D1= O( ε )

Ο

Re

Im

(ε3)
Denominator of D = -RA

Numerator  D = -RA

D2= O( ε 2)

D3= O(1)

Fig. 2. Phase angle of D ¼ �RA ¼ ðr23 � r22Þ=ðr
2
3 � r21Þ from Eq. (21); D1 ¼ 2evo=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p
; D2 ¼ e2f½o=ð1� vÞ�2 �

½o=ð1þ vÞ�2g; D3 ¼ �ð1� v2Þ þ e2f½vo=ð1� v2Þ�2 � ½o=ð1þ vÞ�2g:
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Substitution of Eq. (23) into the x ¼ 1 boundary conditions yields

1 1

r22 r24

 !
b2

b4

 !
¼ �

1

r21

 !
b1 )

b2

b4

 !
¼

1

r24 � r22

r21 � r24

r22 � r21

 !
b1: ð24Þ

For the two propagating waves, the relative phase due to the reflection at the right boundary B is
given by the phase of

RB ¼
b2

b1
¼

r21 � r24
r24 � r22

: ð25Þ

Similar to the handling of RA; the phase angle of RB is

fðRBÞ ¼ pþ Oðe3Þ: ð26Þ

Substitution of Eqs. (15), (22), and (26) into Eq. (17) leads to

2o
1� v2

�
1

2
e2o3

1

ð1þ vÞ4
þ

1

ð1� vÞ4

� 

þ? ¼ 2np; n ¼ 0;71;72;y : ð27Þ

This is an algebraic equation (for o) with the small parameter e multiplying the highest power.
Application of the previously discussed algebraic perturbation technique leads to three different
roots. Only the root from the straightforward expansion form is retained. The two roots from the
singular expansion form are discarded because they yield complex roots, and physically the
natural frequency omust be real for subcritical speeds. Substitution of o ¼ o0 þ eo1 þ e2o2 þ?
into Eq. (27) leads to

on ¼ np½1� v2 þ e2n2p2ðv4 þ 6v2 þ 1Þ=2þ?�; n ¼ 1; 2; 3;y : ð28Þ

Fig. 3 compares the fundamental ðn ¼ 1Þ natural frequencies obtained from Eq. (28) with
numerically exact solutions for different belt speed v and different bending stiffness. The
approximation results are best for small bending stiffness and low axial belt speeds. This is
because for such cases the four roots in Eq. (15) have the best perturbation approximation. For
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large bending stiffness or high speed, more terms need to be incorporated in the perturbation
approximation.
When v ¼ 0; Eq. (28) becomes

on ¼ np 1þ 1
2
e2ðnpÞ2

� �
þ?; n ¼ 1; 2; 3;y : ð29Þ

The exact eigensolution for the special case v ¼ 0 is

oexact ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnpÞ2 þ e2ðnpÞ4

q
; wðxÞ ¼ sinðnpxÞ; n ¼ 1; 2; 3;y : ð30Þ

Expansion of the eigenvalue in Eq. (30) for small e yields Eq. (29).
Computation of the eigenfunctions requires additional consideration of the evanescent waves at

the boundaries A and B: From Eqs. (20) and (24),

*RA ¼
c3

c2
¼

r21 � r22
r23 � r21

¼
½o=ð1þ vÞ�2 � ½o=ð1� vÞ�2

f½vo=ð1� v2Þ�2 � ð1� v2Þ=e2 � ½o=ð1þ vÞ�2g þ i2vo=ðe
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p
Þ
; ð31Þ

*RB ¼
b4

b1
¼ �

r21 � r22
r24 � r22

¼ �
½o=ð1þ vÞ�2 � ½o=ð1� vÞ�2

f½vo=ð1� v2Þ�2 � ð1� v2Þ=e2 � ½o=ð1� vÞ�2g � i2vo=ðe
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p
Þ
: ð32Þ

The eigenfunction can be written as

wðxÞ ¼ c1e
ir1x þ c2e

ir2x þ c3e
ir3x þ b4e

ir4x: ð33Þ

Normalization of Eq. (33) by dividing it by c2; application of Eqs. (21), (31), (32), and use of
x ¼ x � 1 and b1 ¼ c1e

ir1 give

wðxÞ ¼ RAe
ir1x þ eir2x þ *RAe

ir3x þ RAe
ir1 *RBe

ir4ðx�1Þ: ð34Þ

When va0; there are boundary layer terms from the evanescent r3 and r4 terms. But when v ¼ 0;
RA ¼ �1 and *RA ¼ *RB ¼ 0; leading to the eigenfunctions

wðxÞ ¼ �eir1x þ eir2x: ð35Þ

Substitution of Eqs. (15), (29), and v ¼ 0 into Eq. (35) gives the eigenfunction approximation

wðxÞ ¼ sinðnpxÞ; n ¼ 1; 2; 3y; ð36Þ

in agreement with the exact solution in Eq. (30). The eigenfunctions have no boundary layer terms
for v ¼ 0 while they do for va0:

4. Other boundary conditions

The above perturbation method for the eigenvalue problem can be applied to other boundary
conditions. Table 2 lists the reflection coefficients ðRA;RB; *RA; *RBÞ for two different end
supports. These can be used to determine the eigensolutions for combinations of such boundary
conditions. For example, for the fixed-simple boundary conditions wð0; tÞ ¼ wxð0; tÞ ¼ 0; wð1; tÞ ¼
wxxð1; tÞ ¼ 0; we have RA ¼ ðr2 � r3Þ=ðr3 � r1Þ; *RA ¼ ðr1 � r2Þ=ðr3 � r1Þ; RB ¼ ðr21 � r24Þ=ðr

2
4 � r22Þ;
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and *RB ¼ ðr22 � r21Þ=ðr
2
4 � r22Þ: The presented method yields the approximate eigenvalues

on ¼ npð1� v2Þ 1þ
1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p eþ?

" #
; n ¼ 1; 2; 3y: ð37Þ

The corresponding eigenfunctions still have form (34) but with revised coefficients RA; *RA; *RB:
The roots r1–r4 in Eq. (15) have the same functional form but differ between boundary condition
cases because of changes in the expression for o (e.g. Eqs. (27) and (37)).
Another example is for the fixed-fixed boundary conditions wð0; tÞ ¼ wð1; tÞ ¼ 0; wxð0; tÞ ¼

wxð1; tÞ ¼ 0: The approximate eigenvalues are

on ¼ npð1� v2Þ 1þ
2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p eþ?

" #
; n ¼ 1; 2; 3y : ð38Þ

The approximate eigenfunction is the superposition of the four component waves. Again, Eq. (34)
holds for this case, in which o is different for r1–r4 in Eq. (15) according to Eq. (38), and the
coefficients RA; *RA; and *RB are available in the second row of Table 2.
For the case of fixed–fixed supports, letting v ¼ 0 in Eq. (38) gives

on ¼ npð1þ 2eÞ þ?; n ¼ 1; 2; 3y ð39Þ

with corresponding eigenfunctions

wnðxÞ ¼
sinðnpxÞ

np
þ e½�ð1� 2xÞcosðnpxÞ þ e�x=e þ ð�1Þnþ1eðx�1Þ=e� þ e2ðyÞ; n ¼ 1; 2; 3y: ð40Þ

For this zero speed case, by using a different perturbation method (directly assuming the
eigenfunction as the combination of outer solution and boundary layer inner solutions), O’Malley
[16] obtains the approximate eigensolutions

o2n ¼ ðnpÞ2 þ 4eðnpÞ2 þ?; n ¼ 1; 2; 3y; ð41Þ

wnðxÞ ¼
sinðnpxÞ

np
þ e

sinðnpxÞ
np

� ð1� 2xÞcosðnpxÞ þ e�x=e þ ð�1Þneðx�1Þ=e
� 


þ e2ðyÞ;

n ¼ 1; 2; 3y ð42Þ
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Table 2

Reflection coefficients for different end supports

Boundary type A ðx ¼ 0Þ B ðx ¼ 1Þ

Simple support
RA ¼ �

r23 � r22
r23 � r21

*RA ¼
r21 � r22
r23 � r21

RB ¼ �
r24 � r21
r24 � r22

*RB ¼ �
r21 � r22
r24 � r22

Fixed support RA ¼ �
r3 � r2

r3 � r1
*RA ¼

r1 � r2

r3 � r1

RB ¼ �
r4 � r1

r4 � r2
*RB ¼ �

r1 � r2

r4 � r2
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These eigenvalues are the same as Eq. (39) for the leading terms. There are two differences
between Eqs. (40) and (42). First, in Eq. (42), the coefficient before the boundary layer term at
x ¼ 1 is ð�1Þn while in Eq. (40) the coefficient is ð�1Þnþ1: Second, there is no term in Eq. (40)
corresponding to the sinðnpxÞ=ðnpÞ term inside the bracket of Eq. (42). For the first difference, it
can be easily checked that ð�1Þn in Eq. (42) is a typographical error that should be ð�1Þnþ1: The
second difference is due to different normalization used in Eqs. (42) and (40); multiplication of
Eq. (40) by ð1þ eÞ yields the same leading terms as Eq. (42). Thus, the eigenfunctions equations
(40) and (42) agree with each other. For such boundary conditions, there are always boundary
layer terms at the ends of the beam. O’Malley’s method is only for stationary beams and does not
extend simply to problems of axially moving beams.

5. Conclusion

Perturbation techniques for algebraic equations and the phase closure principle are combined
to analyze the free vibration of axially moving beams with small bending stiffness. Closed-form
approximate natural frequencies and vibration modes are derived based on the propagation and
attenuation properties of the constituent waves. Uniformly valid approximate eigenfunctions are
obtained. Different combinations of boundary conditions can be readily handled. Boundary
layers, when present, are incorporated via evanescent waves. When the axial speed of the beam is
zero, the solutions converge to known solutions for these non-gyroscopic systems. The approach
is straightforward, suited for different boundary conditions, and has accessible physical
explanation.
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